Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a joint analysis of the cosmic microwave background (CMB) lensing power spectra measured from the Data Release 6 of the Atacama Cosmology Telescope (ACT) and PR4, cross-correlations between the ACT and lensing reconstruction and galaxy clustering from unWISE, and the unWISE clustering auto-spectrum. We obtain 1.5% constraints on the matter density fluctuations at late times parametrized by the best constrained parameter combination . The commonly used parameter is constrained to . In combination with baryon acoustic oscillation (BAO) measurements we find . We also present sound-horizon-independent estimates of the present day Hubble rate of from our large scale structure data alone and in combination with uncalibrated supernovae from . Using parametric estimates of the evolution of matter density fluctuations, we place constraints on cosmic structure in a range of high redshifts typically inaccessible with cross-correlation analyses. Combining lensing cross- and autocorrelations, we derive a 3.3% constraint on the integrated matter density fluctuations above , one of the tightest constraints in this redshift range and fully consistent with a cold dark matter ( ) model fit to the primary CMB from . Finally, combining with primary CMB observations and using the extended low redshift coverage of these combined datasets we derive constraints on a variety of extensions to the model including massive neutrinos, spatial curvature, and dark energy. We find in flat at 95% confidence using the large scale structure data, BAO measurements from Sloan Digital Sky Survey, and primary CMB observations.more » « lessFree, publicly-accessible full text available April 1, 2026
-
ABSTRACT We have performed targeted searches of known extragalactic transient events at millimetre wavelengths using nine seasons (2013–2021) of 98, 150, and 229 GHz Atacama Cosmology Telescope (ACT) observations that mapped ∼40 per cent of the sky for most of the data volume. Our data cover 88 gamma-ray bursts (GRBs), 12 tidal disruption events (TDEs), and 203 other transients, including supernovae (SNe). We stack our ACT observations to increase the signal-to-noise ratio of the maps. In all cases but one, we do not detect these transients in the ACT data. The single candidate detection (event AT2019ppm), seen at ∼5σ significance in our data, appears to be due to active galactic nuclei activity in the host galaxy coincident with a transient alert. For each source in our search we provide flux upper limits. For example, the medians for the 95 per cent confidence upper limits at 98 GHz are 15, 18, and 16 mJy for GRBs, SNe, and TDEs, respectively, in the first month after discovery. The projected sensitivity of future wide-area cosmic microwave background surveys should be sufficient to detect many of these events using the methods described in this paper.more » « less
-
Abstract We present a cross-correlation analysis between resolution total intensity and polarization observations from the Atacama Cosmology Telescope (ACT) at 150 and 220 GHz and 15″ mid-infrared photometry from the Wide-field Infrared Survey Explorer (WISE) over 107 12.°5 × 12.°5 patches of sky. We detect a spatially isotropic signal in the WISE×ACTTTcross-power spectrum at 30σsignificance that we interpret as the correlation between the cosmic infrared background at ACT frequencies and polycyclic aromatic hydrocarbon (PAH) emission from galaxies in WISE, i.e., the cosmic PAH background. Within the Milky Way, the Galactic dustTTspectra are generally well described by power laws inℓover the range 103<ℓ< 104, but there is evidence both for variability in the power-law index and for non-power-law behavior in some regions. We measure a positive correlation between WISE total intensity and ACTE-mode polarization at 1000 <ℓ≲ 6000 at >3σin each of 35 distinct ∼100 deg2regions of the sky, suggesting that alignment between Galactic density structures and the local magnetic field persists to subparsec physical scales in these regions. The distribution ofTEamplitudes in thisℓrange across all 107 regions is biased to positive values, while there is no evidence for such a bias in theTBspectra. This work constitutes the highest-ℓmeasurements of the Galactic dustTEspectrum to date and indicates that cross-correlation with high-resolution mid-infrared measurements of dust emission is a promising tool for constraining the spatial statistics of dust emission at millimeter wavelengths.more » « less
-
Abstract Diverse astrophysical observations suggest the existence of cold dark matter that interacts only gravitationally with radiation and ordinary baryonic matter. Any nonzero coupling between dark matter and baryons would provide a significant step towards understanding the particle nature of dark matter. Measurements of the cosmic microwave background (CMB) provide constraints on such a coupling that complement laboratory searches. In this work we place upper limits on a variety of models for dark matter elastic scattering with protons and electrons by combining large-scale CMB data from the Planck satellite with small-scale information from Atacama Cosmology Telescope (ACT) DR4 data. In the case of velocity-independent scattering, we obtain bounds on the interaction cross section for protons that are 40% tighter than previous constraints from the CMB anisotropy. For some models with velocity-dependent scattering we find best-fitting cross sections with a 2 σ deviation from zero, but these scattering models are not statistically preferred over ΛCDM in terms of model selection.more » « less
-
Abstract We present power spectra of the cosmic microwave background (CMB) anisotropy in temperature and polarization, measured from the Data Release 6 maps made from Atacama Cosmology Telescope (ACT) data. These cover 19,000 deg2of sky in bands centered at 98, 150 and 220 GHz, with white noise levels three times lower thanPlanckin polarization. We find that the ACT angular power spectra estimated over 10,000 deg2, and measured to arcminute scales in TT, TE and EE, are well fit by the sum of CMB and foregrounds, where the CMB spectra are described by the ΛCDM model. Combining ACT with larger-scalePlanckdata, the joint P-ACT dataset provides tight limits on the ingredients, expansion rate, and initial conditions of the universe. We find similar constraining power, and consistent results, from either thePlanckpower spectra or from ACT combined withWMAPdata, as well as from either temperature or polarization in the joint P-ACT dataset. When combined with CMB lensing from ACT andPlanck, and baryon acoustic oscillation data from the Dark Energy Spectroscopic Instrument (DESI DR1), we measure a baryon density of Ωbh2= 0.0226 ± 0.0001, a cold dark matter density of Ωch2= 0.118 ± 0.001, a Hubble constant ofH0= 68.22 ± 0.36 km/s/Mpc, a spectral index ofns= 0.974 ± 0.003, and an amplitude of density fluctuations ofσ8= 0.813 ± 0.005. Including the DESI DR2 data tightens the Hubble constant toH0= 68.43 ± 0.27 km/s/Mpc; ΛCDM parameters agree between the P-ACT and DESI DR2 data at the 1.6σlevel. We find no evidence for excess lensing in the power spectrum, and no departure from spatial flatness. The contribution from Sunyaev-Zel'dovich (SZ) anisotropy is detected at high significance; we find evidence for a tilt with suppressed small-scale power compared to our baseline SZ template spectrum, consistent with hydrodynamical simulations with feedback.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract We present Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) maps of the Cosmic Microwave Background temperature and polarization anisotropy at arcminute resolution over three frequency bands centered on 98, 150 and 220 GHz. The maps are based on data collected with the AdvancedACT camera over the period 2017–2022 and cover 19,000 square degrees with a median combined depth of 10 μK arcmin. We describe the instrument, mapmaking and map properties and illustrate them with a number of figures and tables. The ACT DR6 maps and derived products are available on LAMBDA athttps://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html. We also provide an interactive web atlas athttps://phy-act1.princeton.edu/public/snaess/actpol/dr6/atlasand HiPS data sets in Aladin (e.g.https://alasky.cds.unistra.fr/ACT/DR4DR6/color_CMB).more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model, ΛCDM, and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from thePlanckmission. To break geometric degeneracies, we include ACT andPlanckCMB lensing data and baryon acoustic oscillation data from DESI Year-1. To test the dependence of our results on non-ACT data, we also explore combinations replacingPlanckwithWMAPand DESI with BOSS, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral indexdns/dlnk= 0.0062 ± 0.0052) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming (Neff= 2.86 ± 0.13, which combined with astrophysical measurements of primordial helium and deuterium abundances becomesNeff= 2.89 ± 0.11), for non-zero neutrino masses (∑mν< 0.089 eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation (Nidr< 0.134), or for early-universe variation of fundamental constants, including the fine-structure constant (αEM/αEM,0= 1.0043 ± 0.0017) and the electron mass (me/me,0= 1.0063 ± 0.0056). Our data are consistent with standard big bang nucleosynthesis (we findYp= 0.2312 ± 0.0092), theCOBE/FIRAS-inferred CMB temperature (we findTCMB= 2.698 ± 0.016 K), a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant (w= -0.986 ± 0.025), and the late-time growth rate predicted by general relativity (γ= 0.663 ± 0.052). We find no statistically significant preference for a departure from the baseline ΛCDM model. In fits to models invoking early dark energy, primordial magnetic fields, or an arbitrary modified recombination history, we findH0= 69.9+0.8-1.5, 69.1 ± 0.5, or 69.6 ± 1.0 km/s/Mpc, respectively; using BOSS instead of DESI BAO data reduces the central values of these constraints by 1–1.5 km/s/Mpc while only slightly increasing the error bars. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored over ΛCDM by our data.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract We describe the measurement and treatment of the telescope beams for the Atacama Cosmology Telescope's fourth data release, DR4. Observations of Uranus are used to measure the central portion (<12 ' ) of the beams to roughly -40 dB of the peak. Such planet maps in intensity are used to construct azimuthally averaged beam profiles, which are fit with a physically motivated model before being transformed into Fourier space. We investigate and quantify a number of percent-level corrections to the beams, all of which are important for precision cosmology. Uranus maps in polarization are used to measure the temperature-to-polarization leakage in the main part of the beams, which is ≲ 1% (2.5%) at 150 GHz (98 GHz). The beams also have polarized sidelobes, which are measured with observations of Saturn and deprojected from the ACT time-ordered data. Notable changes relative to past ACT beam analyses include an improved subtraction of the atmospheric effects from Uranus calibration maps, incorporation of a scattering term in the beam profile model, and refinements to the beam model uncertainties and the main temperature-to-polarization leakage terms in the ACT power spectrum analysis.more » « less
An official website of the United States government
